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1. Introduction. 

Estimation of agricultural production (crop biomass and yield) is mostly based on the use 

of crop modelling techniques. Since the late 1960’s, when crop modelling and agro 

ecosystem modelling was initiated, many agro ecosystem models have been developed at 

different scales, for a great variety of crop and plants and for many applications. Nowadays 

crop simulation models not only incorporate biological and physiological knowledge of 

plants, but also model the interactions between plants and their environment 

There are different types of crop models which are characterized by their level of 

complexity and their ability to exploit different levels of information at different spatial 

scales. Remote sensing is used as a tool to feed these models and compensate for the lack 

of local information and simplifications of these models (Baghdadi and Zibri, 2016). 

The use of crop simulation models has increased significantly in recent years, as it allows 

the determination of crop production potentials in a given agroclimatic area. Information 

is needed on the factors that define and limit crop growth and development, and which are 

often integrated into models as independent variables. The type of simulation model to be 

used depends on the objective to be achieved, the level of complexity of the process under 

study, and the nature and availability of data required as model inputs. The information 

and data requirements associated with crop simulation models in the field of crop biomass 

and yield estimation depend on the degree of detail to be achieved. Among the 

components that make up the crop simulation models are those related to the crop itself, 

climate, soil, management, and socio-economic factors. 

The development that computational methods have experienced in recent years has 

provided a major impetus in the generalization of the use of models that integrate the 

effect of agricultural inputs on crop yields. In this way a large number of computer 

applications have emerged that integrate simulation models in the field of characterization 

of crop development. Among the models developed leveraging the power of computing 

techniques, a distinction can be drawn among them depending on their degree of 

complexity.  

Among the “complex” models it is possible to find the so-called “ecophysiological” models 

that simulate the major plant processes in a mechanistic way (SUCROS (Penning de Vries 

and Van Laar, 1982), WOFOST (Van Diepen et al., 1989), etc.) 

In this category of “complex” models it is also possible to find the “agronomical” models 

that describe the effect of agricultural practices on a large number of crops (CERES-maize 

(Jones and Kiniry, 1986), Crop-Syst (Stockle et al., 1994), EPIC (Williams et al., 1984), 

GOSSYM (Reddy et al., 1997), STICS (Brisson et al, 2003)). In these models some 

physiological processes have been simplified. They mostly use different versions of the 

Monteith equation that simulates the daily increase in biomass from global incident 

radiation and from three efficiency factors (climatic, light absorption and radiation use) 

(Monteith, 1972). These versions of Monteith equation are integrated with a set of a large 

number of other equations. 

Apart from these “complex” models there are simple ones that just calculate the biomass 

from Monteith equation.  The third category of crop models (semi-empirical approaches) 

combines the Monteith equation with some major processes (plant development, water 
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dynamics in the soil, etc.).  Nevertheless they have a restricted number of formalism and 

parameters compared with the “complex” crop models (AquaCrop (Steduto et al., 2009), 

SAFY (Duchemin et al., 2008).  

In crop simulation models, vegetation state variables such as developmental phase, organ 

dry mass, and leaf area index (LAI) are linked to driving variables like weather conditions, 

nutrient availability and management variables. The output of the models usually is the 

final yield or accumulated biomass (Delécolle et al., 1992). Crop models use computational 

iterations that represent the time step of the model. At each iteration, vegetation state 

variables are updated based on the input driving variables and the values of the state 

variables at the previous time step (Delécolle et al., 1992). 

The parallel development of agro ecosystem models and remote sensing techniques led to 

an early fusion of these fields and to the development of synergic applications.  

The first civil satellite for earth observation, LANDSAT-1, was launched in 1972 and 

showed that RS (Remote Sensing) is an excellent tool to monitor the bio-geophysical 

processes that take place on our planet from global to regional scales (Goward and 

Williams, 1997). Only a few years later the North-American Large Area Crop Inventory 

Experiment (LACIE) and AgRISTARS programs proved that RS data could successfully 

assist in crop identification, estimation of some important crop canopy properties, and 

even help to forecast crop production (Moran et al., 1997). The launch of the Radarsat 

satellite in 1995 has provided opportunities for crop monitoring with radar images. The 

use of radar is particularly attractive because of its all weather capability and the 

sensitivity of microwaves to canopy structure and moistures (McNairn et al., 2002). More 

recently, new satellite missions emerged in the microwave domain (e.g., TerraSAR-X, 

Radarsat-2, Sentinel-1, or Alos-2). 

Since these early days many scientists have retrieved canopy state variables over large 

areas using available sensors (see Table 2 for some examples). Leaf area index (LAI), 

fractional cover (fCOVER), the fraction of photosynthetically active radiation absorbed by 

the canopy (fPAR), and plant chlorophyll concentration are among the most important 

canopy state variables and therefore frequently assimilated in agro ecosystem models 

(Dorigo et al., 2007). 
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Figure 1. Canopy state and driving variables usually retrieved from remote sensing data 

(Dorigo et al., 2007). 

 

2. Crop state variables retrieval from RS. 

A model is needed in order to estimate surface biogeophysical variables based on optical 

Remote Sensing (RS). This model should enable the interpretation of spectral observations 

and their translation into a surface bio-geophysical variable. From a statistical point of 

view this boilsdowns to a regression problem (Fernandes and Leblanc, 2005). Bio-

geophysical variable retrievals, as described in terrestrial RS literature, are typically 

grouped in two categories: (1) the statistical category; and (2) the physical category (Baret 

and Buis, 2008). Over the last decade, however, both methodological categories expanded 

into subcategories. Exemplary is the increasing number of elements of both categories 

which have been integrated into hybrid approaches (Verrelst et al., 2015). 

2.1. Statistical approaches. 
Statistical approaches intent to reach a relationship between the spectral signature of an 
object, in general the leaf or canopy reflectance, and the biophysical or biochemical 

variable of interest (a state variable of a crop model for example). To establish such 

relationships, spectral, biophysical, and biochemical measurements have to be taken 

under varying field or laboratory conditions and for different plant species and 

phenological development stages. Depending on the accuracy of the measurements and 

the range of conditions considered, different degrees of validity and portability of the 

relationships will be reach (Sims and Gamon, 2002). 

The retrieval of biophysical variables from RS data, requires a variety of data 

manipulations to enhance subtle spectral features and to reduce undesired effects caused 

by variations in soil reflectance, sun and view geometry, atmospheric composition, and 

other leaf or canopy properties. The most widespread method used to reduce background 

effects and enhance spectral features is to express spectral reflectance in a combination of 

a limited number of (transformed) spectral bands, to create what is known as a vegetation 

index (VI). Most VIs are focused on the red-edge region, which is the region between 680 

and 800 nm. This spectral region is characterized by a sharp decrease of chlorophyll 

absorption from maximum absorption around 680 nm to almost zero absorption at 800 

nm. This makes this wavelength range very well suited to study vegetation characteristics 



 

5 
 

(Baret et al., 1992). VIs can be subdivided into two main categories: (i) VIs designed for 

broadband multispectral sensors, and (ii) hyperspectral VIs based on discrete narrow 

bands. 

The group of classic broadband VIs can be subdivided into ratios, and orthogonal indices 

(Broge and Mortensen, 2002). The ratios are calculated without considering the soil 

reflectance properties (eg. NDVI), while the orthogonal indices take into account the soil 

reflectance (they are referred to a specific baseline for the local soil background (eg. 

SAVI)). Finally, hybrid indices can be considered as a combination of ratios and orthogonal 

indices. 

Regarding hyperspectral VIs based on discrete narrow bands, during the last decade new 

indices have been explored using the information contained in narrow absorption 

features. In this way it is possible to improve estimations of leaf constituents like 

chlorophyll and water (Haboudane et al., 2004) or even to explore biochemicals with more 

subtle spectral absorption features such as protein, lignin and phosphorus (Mutanga et al., 

2004).  

Furthermore, in recent times, novel approaches based on spectral shape and depth of 

spectral absorption characteristics have been developed. Although most of these new 

techniques were originally developed to identify leaf components, many of them have 

been successfully applied in estimating other biophysical variables such as LAI 

(Haboudane et al., 2004). 

 

Figure 2. Examples of using statistical-empirical approaches for the estimation of canopy 

state variables (Dorigo et al., 2007). 
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Depending on the statistical method adopted for linking spectral information to the 

measured biophysical and biochemical variables, a distinction can be defined between two 

groups of method (Verrelst et al.,  2015): 

(1) Parametric regression methods: Parametric methods assume an explicit relationship 

between spectral observations and a specific bio-geophysical variable. Thus, explicit 

parameterized expressions are built, typically by relying on statistical or physical 

knowledge of the variable and the spectral response. Typically a band arithmetic 

formulation is defined (e.g., a vegetation index) and then linked to the variable of interest 

based on a fitting function. 

(2) Non-parametric regression methods: Non-parametric methods directly define 

regression functions according to information from RS data. Hence, in contrast to 

parametric regression methods, a non-explicit choice is to be made on spectral band 

relationships, transformation(s) or fitting functions. These last ones can further be split 

into linear or non-linear regression methods. 

2.2. Physical approach.  
This approach involves the use of physical laws based on cause-effect relationships. The 

variables of the model are inferred based on specific knowledge, typically obtained with 

radiative transfer functions. These physics-based methods can also be combined with non-

parametric statistical approaches like hybrid approaches. Hybrid models make use of the 

generic properties of physics-based methods combined with the flexibility and 

computational efficiency of nonparametric nonlinear regression methods (Dorigo el al., 

2007). 

The physical approach consists of inverting a radiation transfer model for the estimation 

of leaf and canopy properties.  The most established way of modelling reflectance in 

canopies is to combine a leaf optical model with a canopy reflectance and a soil reflectance 

model and calculate the top-of-canopy reflectance.   

Soil reflectance is an important element in modelling canopy reflectance, being the lower 

boundary condition and having its own spectral properties (e.g. absorption features and 

directional reflectance properties). Knowing soil reflectance is fundamental if sparse or 

low vegetated canopies are to be simulated. This model input is typically measured in the 

field, taken from the image itself, or can be simulated using soil reflectance models 

(Jacquemoud et al., 1992). 

Regarding leaf optical models, the understanding of leaf microstructures and the 

distribution of biochemical components in leaves is still very limited. The same is true for 

the anisotropic scattering of leaves (Jacquemoud and Ustin, 2001). Nevertheless, various 

approaches have been proposed, successfully describing leaf scattering and absorption in 

a more or less simplified way. 

Canopy reflectance models simulate the interactions between solar radiation and the 

elements constituting the canopy using physical laws. For applications in remote sensing 

this calculated reflectance should be in agreement with measured reflectance data 

corrected for atmospheric influences (Dorigo et al., 2007). 
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The traditional canopy reflectance models, which are based on the radiative transfer 

approach, assume that the canopy is a turbid medium where the canopy elements (leaves) 

are treated as small, randomly distributed absorbing and scattering elements with no 

physical size. A one-dimensional approximation (Verhoef, 1984) assumes the canopy to be 

horizontally homogeneous and infinite but vertically variable and finite. These 

assumptions, together with the fact that leaf area is explicitly taken into account, make this 

type of model well suited for describing radiance propagation in denser canopies where 

the single vegetation elements are smaller than the canopy height, which is the case for 

most agricultural crops (Dorigo et al., 2007). 

Inverting a canopy reflectance model consists in finding the set of input parameters that 

leads to the best match between the bi-directional reflectance factor (BRF) simulated with 

a canopy reflectance model and the reflectance measured by the sensor (Combal et al., 

2002).  Different methods have been developed to solve this problem. 

 

Figure 3. Examples of various approaches to model leaf and canopy reflectance (Dorigo et 

al., 2007). 

Figure 4. Comparison of physical and statistical approaches for crop state variables 

retrieval from RS (Dorigo et al., 2007). 
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3. Coupling crop models and crop state variable retrieved from RS data. 

Crop models are widely used to describe the impact of climatic conditions and 

management strategies at field scale, and can be applied in a distributed mode at regional 

scale.  The major problems with some crop and ecophysiological models could be related 

to a certain oversimplified description of the natural system, inaccurate parameterization 

and uncertainty, and hence a low prediction performance. The problems are particularly 

evident at regional scales where model input parameters have to be gathered from 

scattered point locations such as weather stations (de Wit et al., 2005). Boundary 

conditions (soil, management) are often poorly known and model parameters have to be 

estimated from limited experimental data. Remote Sensing (RS) offers the spatial 

observation of biophysical/biochemical variables. Therefore the combined use of RS 

derived biophysical/biochemical state variables and crop models is able to improve their 

predictive performance, especially at regional scale (Launay and Guérif, 2005). 

Various methods have been developed to integrate remotely sensed observations in crop 

models. In general, three different strategies can be applied which have been described in 

various papers (Bach and Mauser, 2003; Delècolle et al., 1992; Houser et al., 1998; 

Makowski et al., 2003; Moulin et al., 1998). 

Calibration: With the ‘calibration’ method, an optimal agreement between the simulated 

and the observed state variables of the crop model are otained by adjusting model 

parameters or initial conditions. The sensitive and uncertain model parameters are 

calibrated either manually or automatically by running the model with various 

combinations of parameter values within realistic ranges.  Examples of this type are given 

by Maas (1988) and Bouman (1995). 

The direct use of radiometric information to re-parameterise and/or re-initialize a crop 

model is another version of this calibration approach (instead of using the crop model 

state variable value). This version of calibration is based on considering that the temporal 

behaviour of canopy surface reflectance, as they can be observed from satellite, can be 

reproduced by coupling a radiative transfer model to the crop production model (Bouman 

1992, Major et al. 1992, Fischer et al., 1997). Analytic reflectance models accounts for view 

and solar geometries, crop structure and crop and soil optical properties. The 

minimization of differences between the simulated and observed reflectance (not crop 

model state variables) is carried out by adjusting initial conditions or model parameters. 

The pertinent parameters are those which strongly constrain the behaviour of both 

satellite signals and biological variables of interest, i.e., the parameters which drive the 

canopy development. 

Forcing: The ‘forcing’ strategy consists of the substitution of at least one state variable in 

the model using remote sensing data. The direct use of observed data to prescribe a state 

variable requires the availability of observations at each model time step, which is daily or 

weekly in case of most of the agroecosystem models. However remote sensing estimations 

are available only at acquisition dates, generally less frequent than the model step. To 

derive the state variable at model time step different interpolation techniques, such as 

linear interpolation, fast Fourier transformations (Roerink et al., 2000) and wavelet 

approaches, are used to fill the gaps between two observations. 
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Updating: The ‘updating’ method consists of the continuously updating of model state 

variables, whenever an observation is available. In this case there is not necessary a direct 

use of observed data and an interpolation process to derive the state variable at each 

model time step. The state variable is updated based on observations (according to 

different approaches) and the crop model is applied until the next update of the state 

variable.  This strategy is more generally referred to as ‘sequential data assimilation’ and 

several algorithms have been developed for assimilating observations into models 

(McLaughlin, 2002). A better simulated state variable at one day will also improve the 

accuracy of the simulated state variable at succeeding days. This is the assumption of this 

method.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic representation of different methods to integrate remotely sensed 

observations in crop models (Dorigo et al., 2007). 

 

4. Examples of coupling. 

4.1. Empirical approaches. 
Among the different empirical approaches that convert “directly” data provided by the 

satellites into useful information (such as crop yield), machine learning plays a 

fundamental role. It allows to model complex patterns that cannot be discerned with a 

simple technique (linear models). For the development of these techniques, the increase of 

computational power and the lowering of computer equipment has been a key point. 

Below, some examples of the use of empirical approaches (machine learning techniques in 

this case) for modelling crop yields and other crop parameters based on remote sensing 

data.   
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The most succesful empirical techniques to achieve precise yield forecast are Artificial 

Neural Network (ANN), Random Forests (RF), Support Vector Regression (SVR) and k-

nearest neighbour. For example, Pantazi et al. 2016 have used satellite information and 

soil information to estimate yield in a 22 ha wheat field. The satellite images were 

obtained on May 2 and June 3 from the UK-DMC-2 of the Disaster Monitoring Constellation 

for International Imaging (DMCii) with a resolution of 22 m.  A modified version of ANN 

was used as algorithm to estimate the yield. NDVI was calculated from the satellite bands. 

This methodology allowed improving wheat yield forecasts.  

Panda et al. (2010) implemented Back-propagation Neural Network (BPNN) to test the 

efficiency of the following four spectral vegetation indices: NDVI, green vegetation index 

(GVI), soil adjusted vegetation index (SAVI) and perpendicular vegetation index (PVI) in 

corn crop yield prediction. The results showed that the corn yield was best predicted using 

BPNN models that used the means and standard deviations of PVI grid images.  

Han et al. (2020) proposed a multi-source data machine learning approach to improve 

wheat yield forecast in China.  Kamir et al. (2020) propose a similar model to improve 

yield estimation from Australia.  

Hunt et al. (2019) provide a novel demonstration of the use of freely available Sentinel-2 

data to estimate within-field wheat yield variability in a single year. In this study, RS 

information was combined with environmental data to improve model prediction 

capacity. Unlike other authors, Hunt et al. (2019) used Random Forest (RF) algorithm to 

generate the model. RF results were compared with simple regression. 34 wheat plot were 

analysed in this study and the mean RMSE was 0.61T/ha. Applying this method they 

obtained a range of crop yield across the landscape of 4.09 to 12.22 t/ha, with a total crop 

production of approx. 289,000 T. 

One of the latest published works has been done by Kayad et al. (2019). A 22-ha cornfield 

was monitored during 2016 to 2018. The yield was measured using grain yield monitor, 

mounted on the harvester machine. Vegetation indices obtained from 34 satellite images 

were used in this study. Each image was compared through correlation with yield image. 

Multiple regression and two different machine learning approaches were also tested to 

model corn grain yield. Green Normalized Difference Vegetation Index (GNDVI) provided 

the highest R2. The most accurate yield prediction was obtained by Random Forest 

technique.  

Some satellites provide Synthetic Aperture Radar (SAR) images, nevertheless, only 

few studies have addressed the possibilities of combining radar data and crop. Thanks to 

the Sentinel-1 mission (ESA), images are now provided routinely and freely all over the 

world which allow to develop operational services. This satellite constellation has a revisit 

period of 6 days and a spatial resolution of 20×22 m (10×10 m of pixel spacing). One of the 

greatest advantages of radar images over optical images is that cloudiness does not affect 

them. Therefore, they are useful every day of the year, making it easier to obtain a better 

time series. Simple empirical approaches have been validated on corn to retrieve basic 

biophysical variables such as dry biomass and leaf area index (Baup et., al 2019). 

Ndikumana et al. (2018) proposed a methodology to estimate rice height and dry biomass 

based on SAR retrievals. To do this, 3 machine learning techniques were compared: 

Multiple Linear Regression (MLR), Support Vector Regression (SVR) and Random Forest 
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(RF). The study was done using multi-temporal dataset (may-17 to september-17) of 

Camargue region. Model validation was done with data acquired in 11 rice plots. Non-

parametric methods (SVR and RF) had a better performance over the parametric MLR 

method for rice biophysical parameter retrievals. Dry biomass and rice high are strongly 

correlated (R2>0.9) to dual-polarization signal of Sentinel-1 images. 

4.2. Agronomical models. 
As it was mentioned in the introduction agronomical, crop or ecophysiological models 

simulate major plant processes in a mechanistic way with different levels of detail. In the 

case of agronomical or crop models the description the effect of agricultural practices on a 

large number of crops is included. Remote sensing is a valuable tool to feed these models 

and compensate the lack of local information and the simplification usually introduced in 

these models due to their complexity. 

Jin el al. (2018) in their review of data assimilation of remote sensing and crop models, 

presented a detailed compilation of studies in which crop models have been coupled with 

remote sensing data. Examples of these studies are presented in figures 6, 7 and 8, which 

are adapted from Jin el al. (2018). In these the studies crop model-RS data couples are 

divided into three groups depending on the coupling approach: calibration, forcing, 
update. 

 

Figure 6. Examples of coupling agronomical models with RS data based on calibration 

method (Jin et al., 2018).
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Figure 7. Examples of coupling agronomical models with RS data based on forcing method 

(Jin et al., 2018). 

 

Figure 8. Examples of coupling agronomical models with RS data based on updating (Jin et 

al., 2018). 
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4.3. SAFY-WB. 
The agronomical models mentioned above can be considered as complex models given the 

number of input parameters and simulated processes. For example, the STICS model 

employs more than 227 parameters in order to simulate a wheat crop (129 parameters 

related with plant processes, 23 parameters for agricultural practices, and 75 parameters 

related with soil properties and dynamics). This information may available at a local scale 

(field scale) but it is difficult to get over large areas. As it was mentioned in the 

introduction there is a category of crop models, the semi-empirical approaches, that 

combines the Monteith equation with some major processes (plant development, water 

availability in the soil) but with a restricted number of formalisms and parameters 

compared with the “complex” crop models.   

Monteith model (Monteith, 1977) provides the simulation of dry biomass production and 

the interception of light by vegetation. For the modelling of growth and crop yields, it can 

be advantageous to introduce the leaf area index (LAI), which is involved in the production 

of vegetative biomass and is a key variable in the functioning of crops. In this context, the 

Simple Algorithm for Yield Estimate (SAFY), a model developed by Duchemin et al. (2008) 

takes into account the main processes of cereal development and growth at the plot scale. 

This model is based on the light-use efficiency theory of Monteith model. It provides a 

simulation of the increase in dry above-ground phytomass. Also, it takes into account the 

influence of temperature and the dynamics of green leaves. 

Recently this model (SAFY) has been combined with a simple water balance model (SAFY-

WB) (Duchemin et al., 2015). This agro-meteorological model, named SAFY-WB (simple 

algorithm for yield estimates coupled with a water balance model) detailed in the 

literature (Duchemin et al., 2008, 2015), requires the following meteorological input 

variables: global solar radiation, air temperature, precipitation, and potential 

evapotranspiration. In the context of the present project the coupling of this model with 

RS data seems an interesting choice in order to estimate crop biomass and yield. Next 

there is a brief description of the model as it is described in the recent study of Baup et al., 

(2019). 

The phytomass increases during the period of photosynthetic activity, from an initial value 

(TDM0) at the day of plant emergence (D0) to a final value when leaf senescence ends. The 

TDM (total dry biomass) and GAI (green leaf area index) are proportional to the absorbed 

photosynthetically active radiation, according to the effective light use efficiency, and a 

stress coefficient related to the meteorological conditions (relationship adapted from the 

literature (Monteith et al., 1977)). 

 

                                                  1 

                                                       2 

                                                                                         3 

                                                                                                                         4 
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Where ELUE represents the effective light use efficiency, SLA the specific leaf area, PLI the 

partitioning to leaf index, Sc the stress coefficient of water and temperature, and doy the 

day of the year. 

The photosynthetically active fraction of solar radiation absorbed by the plants (fPAR) is 

proportional to GAI and Rg (global solar radiation).  

                   (   
         )                                   5 

The leaf production and leaf senescence are controlled by a growing degree-day function. 

During the leaf growing period, a fraction of the daily DM (dry biomass) production is 

allocated to the leaf production 

          (       
(    ∑       ))                                                                                           6 

                                                                                                                               7 

where, PlA and PlB (empirical parameters) drive the partitioning to the leaves. The 

senescence occurred at a prescribed rate, when the air temperature accumulated from 

plant emergence (∑Tempdoy) reaches a crop-specific threshold (Stt). A temperature-stress 

function affected the dry biomass production, considering a 2-degree polynomial specified 

by an optimal value (for example 30 ºC in the case of corn) and two extreme values (6 and 

42 ºC for corn), beyond which the crop growth stopped.  

The limited number of parameters of this model facilitates combining it with remotely 

sensed data. Six main parameters have been defined as target parameters through the 

sensitivity study described by Duchemin et al. (2008). Four of them describe the 

development stages of the crop as follows: partitioning to the leaf parameters (PlA and PlB) 

is effective during the growth phase (Equations (6) and (7)), while the cumulative 

temperature, which induces senescence and the rate of senescence (Stt and Rs), is used to 

describe the last phenological stages. Four phenological stages are simulated by the model, 

as follows: four to five leaves, flowering, ripening, and harvest. They are derived from D0, 

from the day on which the EDM (ear dry biomass) starts growing, when GAI starts 

decreasing, and when GAI reaches 0, respectively. 

Recent studies have shown that this model provides reliable predictions of biomass and 

correct estimations of crop yield in different water regimes (rainfed/irrigation) and for 

different crops: wheat, corn, and sunflower, using only optical images (Claverie et al., 

2012; Duchemin et al., 2015; Battude et al, 2016), and for soybean, sunflower, and grain 

corn using both optical and SAR (Synthetic Aperture Radar images) [Betbeder et al., 2016; 

Baup et al., 2016; Fieuzal et al., 2017). 
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